海洋环境下飞行器关键金属材料典型腐蚀失效综述

任浩源, 常汉江, 金晶, 王艳艳, 石航

装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 50-62.

PDF(5350 KB)
PDF(5350 KB)
装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 50-62. DOI: 10.7643/ issn.1672-9242.2026.01.007
航空航天装备

海洋环境下飞行器关键金属材料典型腐蚀失效综述

  • 任浩源1, 常汉江1, 金晶1, 王艳艳2, 石航1
作者信息 +

A Review of Typical Corrosion Failures of Aircraft Metal Materials in Marine Environments

  • REN Haoyuan1, CHANG Hanjiang1, JIN Jing1, WANG Yanyan2, SHI Hang1
Author information +
文章历史 +

摘要

回顾了海洋环境下飞行器金属结构腐蚀失效分析的研究进展,涵盖了腐蚀机理、分析方法和防护技术3个方面。重点包括海洋腐蚀环境特性与飞行器易腐蚀区域分析、金属材料在海洋环境中的腐蚀规律与失效机制,以及人工智能技术在腐蚀预测、监测与评估中的应用特点。通过广泛参考国内外相关研究,对腐蚀机理模型、分析方法和全寿命周期防护对策进行了综述,讨论了该领域当前面临的挑战与发展建议。

Abstract

The work aims to review the recent research progress in the analysis of corrosion failure of aircraft metallic structures in marine environments, covering three main aspects of corrosion mechanisms, analytical methods, and protection technologies. The focus is placed on the characteristics of the marine corrosive environment and the analysis of corrosion-prone areas on aircraft, the corrosion laws and failure mechanisms of metallic materials in marine environments, and the application characteristics of AI technology in corrosion prediction, monitoring, and assessment. By extensively referring to relevant Chinese and international studies, the corrosion analysis methods, intelligent models, and full life-cycle protection strategies are summarized and the current challenges and development recommendations in the field are also explored.

关键词

海洋环境 / 金属材料 / 腐蚀失效 / 人工智能 / 防护技术 / 预测监测

Key words

marine environment / metallic materials / corrosion failure / artificial intelligence / protection technology / prediction and monitoring

引用本文

导出引用
任浩源, 常汉江, 金晶, 王艳艳, 石航. 海洋环境下飞行器关键金属材料典型腐蚀失效综述[J]. 装备环境工程. 2026, 23(1): 50-62 https://doi.org/10.7643/ issn.1672-9242.2026.01.007
REN Haoyuan, CHANG Hanjiang, JIN Jing, WANG Yanyan, SHI Hang. A Review of Typical Corrosion Failures of Aircraft Metal Materials in Marine Environments[J]. Equipment Environmental Engineering. 2026, 23(1): 50-62 https://doi.org/10.7643/ issn.1672-9242.2026.01.007
中图分类号: TJ86    TG172   

参考文献

[1] 骆晨, 孙志华, 杨丽媛, 等.海洋环境服役发动机腐蚀损伤分析及防护能力提升建议[J].装备环境工程, 2024, 21(5): 50-56.
LUO C, SUN Z H, YANG L Y, et al.Analysis on Corrosion Damage of Aero Engine Servicing in Marine Environment and Suggestions for Protection Improvement[J].Equipment Environmental Engineering, 2024, 21(5): 50-56.
[2] KUMAR V, SHARMA N, TIWARI S K, et al.Atmospheric Corrosion of Materials and Their Effects on Mechanical Properties: A Brief Review[J].Materials Today: Proceedings, 2021, 44: 4677-4681.
[3] 赵东, 裴文利, 郁大照, 等.海洋环境下机载电连接器腐蚀分析与失效机理[J].海军航空大学学报, 2022, 37(6): 429-436.
ZHAO D, PEI W L, YU D Z, et al.Corrosion Analysis and Failure Mechanism of Airborne Electrical Connectors in Marine Environment[J].Journal of Naval Aviation University, 2022, 37(6): 429-436.
[4] United States General Accounting Office.Defense Management Opportunities to Reduce Corrosion Costs and Increase Readiness[R].Washington: GAO, 2003.
[5] 文邦伟, 龚维强, 朱蕾, 等.航母舰载机用高强、高韧、耐蚀不锈钢[J].装备环境工程, 2007, 4(6): 82-85.
WEN B W, GONG W Q, ZHU L, et al.High Strength, High Toughness Stainless Steel for Carrier-Borne Aircraft[J].Equipment Environmental Engineering, 2007, 4(6): 82-85.
[6] 孙盛坤, 孙志华, 汤智慧, 等.舰载飞机腐蚀控制与防护技术[J].装备环境工程, 2017, 14(3): 18-22.
SUN S K, SUN Z H, TANG Z H, et al.Corrosion Control and Protection Technology of Carrier-Borne Aircraft[J].Equipment Environmental Engineering, 2017, 14(3): 18-22.
[7] 张晓晶, 古远兴, 孙海鹤, 等.某航空发动机压气机转子叶片腐蚀断裂分析[J].海军航空大学学报, 2024, 39(6): 707-714.
ZHANG X J, GU Y X, SUN H H, et al.Corrosion Fracture Analysis of Compressor Blade Rotor in an Aeroengine[J].Journal of Naval Aviation University, 2024, 39(6): 707-714.
[8] 朱蒙, 李明, 陈宇, 等.海洋大气环境下微动开关触点回跳时间增大故障的试验复现与分析[J].海军航空大学学报, 2022, 37(6): 462-468.
ZHU M, LI M, CHEN Y, et al.Test Recurrence and Analysis of the Fault with Increased Contact Bounce Time of Microswitches in Marine Atmospheric Environment[J].Journal of Naval Aviation University, 2022, 37(6): 462-468.
[9] 刘艳.武器装备环境适应性保证[M].北京: 中国宇航出版社, 2020.
LIU Y.Environmental Adaptability Guarantee of Weapons and Equipment[M].Beijing: China Astronautic Publishing House, 2020.
[10] WU Y P, XU M, LIU S M.Generative Artificial Intelligence: A New Engine for Advancing Environmental Science and Engineering[J].Environmental Science & Technology, 2024, 58(40): 17524-17528.
[11] SHU X L, YE Y W.Knowledge Discovery: Methods from Data Mining and Machine Learning[J].Social Science Research, 2023, 110: 102817.
[12] PARK S, JOUNG J, KIM H.Spec Guidance for Engineering Design Based on Data Mining and Neural Networks[J].Computers in Industry, 2023, 144: 103790.
[13] BAIOCCO P.Overview of Reusable Space Systems with a Look to Technology Aspects[J].Acta Astronautica, 2021, 189: 10-25.
[14] LAWAL S L, AFOLALU S A, JEN T C, et al.Corrosion Control and Its Application in Marine Environment—A Review[J].Solid State Phenomena, 2024, 355: 61-73.
[15] 陈亚莉.F/A-18 舰载飞机用材分析(上)[J].航空制造工程, 1997(7): 6-8.
CHEN Y L.Analysis of Material Applications for Carrier Based Aircraft F/a 18(Ⅰ)[J].Aviation Engineering & Maintenance, 1997(7): 6-8.
[16] HALPIN J P, PANDOLFINI P P, BIERMANN P J, et al.F/A-18 E/F Program Independent Analysis[J].Johns Hopkins Apl Technical Digest, 1997, 18: 33-49.
[17] CZABAN M.Aircraft Corrosion—Review of Corrosion Processes and Its Effects in Selected Cases[J].Fatigue of Aircraft Structures, 2018, 2018(10): 5-20.
[18] 徐丽, 陈跃良, 武书阁, 等.舰载机舰面停放环境及腐蚀情况研究[J].飞机设计, 2016, 36(6): 54-57.
XU L, CHEN Y L, WU S G, et al.The Study about the Deck Park Environment of Carrier-Based Aircraft and Corrosive State[J].Aircraft Design, 2016, 36(6): 54-57.
[19] SUO H Y, ZHOU H, WEI Z H, et al.Degradation Mechanisms and Mechanical Behavior of Composite-Metal Bolted/Riveted Joints in Complex Service Conditions: A Comprehensive Review[J].Engineering Failure Analysis, 2025, 182: 110037.
[20] CHARALAMPIDOU C M, PRETORIUS C C E, SALOJEE M, et al.Investigation of the Mechanisms Affecting Corrosion Susceptibility of Wrought Aeronautical Aluminium Alloys Al-Cu-Li (AA2198) and Al-Cu-Mg (AA2024) for Different Pre-Stretching Levels[J].Journal of Materials Research and Technology, 2025, 35: 7253-7272.
[21] 许志昱, 胡骞, 黄峰, 等.缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J].中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
XU Z Y, HU Q, HUANG F, et al.Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J].Journal of Chinese Society for Corrosion and Protection, 2024, 44(6): 1581-1588.
[22] 李鹏涛, 左洪福, 肖文, 等.航空发动机叶片损伤及其修复技术研究与展望[J].航空学报, 2024, 45(15): 132-159.
LI P T, ZUO H F, XIAO W, et al.Research and Prospect of Aero Engine Blade Damage and Its Repair Technology[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 132-159.
[23] 王江, 张林嘉, 张安琴, 等.舰载航空发动机用GH2150A压气机叶片的耐蚀性[J].腐蚀与防护, 2024, 45(7): 24-28.
WANG J, ZHANG L J, ZHANG A Q, et al.Corrosion Resistance of GH2150A Compressor Blade for Shipborne Aeroengine[J].Corrosion & Protection, 2024, 45(7): 24-28.
[24] 程博, 安喆, 张让威, 等.航空发动机管路应力腐蚀断裂分析及防治措施[J].航空发动机, 2024, 50(4): 169-174.
CHENG B, AN Z, ZHANG R W, et al.Analysis and Prevention Measures of Stress Corrosion Fracture of Aeroengine Pipes[J].Aeroengine, 2024, 50(4): 169-174.
[25] 马平昌, 刘玥, 高飞, 等.航空发动机腐蚀敏感性试验系统研制[J].航空动力学报, 2024, 39(10): 31-39.
MA P C, LIU Y, GAO F, et al.Development of Aero-Engine Corrosion Sensitivity Test System[J].Journal of Aerospace Power, 2024, 39(10): 31-39.
[26] 刘思宏.舰载机典型机构腐蚀疲劳可靠性分析[D].西安: 西北工业大学, 2016.
LIU S H.Corrosion Fatigue Reliability Analysis of Typical Mechanism of Carrier-Based Aircraft[D].Xi′an: Northwestern Polytechnical University, 2016.
[27] 赵晨, 李洁.航天发射场故障失效分析案例研究[J].载人航天, 2014, 20(1): 82-88.
ZHAO C, LI J.Cases Study on Failure Analysis at Kennedy Space Center[J].Manned Spaceflight, 2014, 20(1): 82-88.
[28] 陈赫, 柴建国.波音737NG机身下部排水口周围蒙皮腐蚀研究[J].航空维修与工程, 2023(3): 65-67.
CHEN H, CHAI J G.Corrosion Study and Discussion on Fuselage Lower Skin around Drain Holes of B737NG[J].Aviation Maintenance & Engineering, 2023(3): 65-67.
[29] 梁媛媛.波音747飞机客舱地板梁腐蚀原因及修理方法研究[D].天津: 中国民航大学, 2014.
LIANG Y Y.Research of Corrosion Causes and Repair Method of B747 Cabin Floor Beam[D].Tianjin: Civil Aviation University of China, 2014.
[30] 杜一江, 郁大照.腐蚀退化情况下航空射频电连接器电磁干扰仿真[J].装备环境工程, 2025, 22(4): 36-43.
DU Y J, YU D Z.Simulation of Electromagnetic Interference Due to Corrosion Degradation in Aviation RF Electrical Connectors[J].Equipment Environmental Engineering, 2025, 22(4): 36-43.
[31] 贾润川, 李明, 朱蒙, 等.两种实验室方法模拟舰载平台环境下航空电路板的腐蚀行为[J].海军航空大学学报, 2022, 37(6): 469-478.
JIA R C, LI M, ZHU M, et al.Two Laboratory Methods to Simulate the Corrosive Behavior of Aviation Circuit Boards in the Shipboard Platform Environment[J].Journal of Naval Aviation University, 2022, 37(6): 469-478.
[32] 沈剑, 丁星星, 宋凯强, 等.海洋大气环境下装备材料的腐蚀与防护研究进展[J].装备环境工程, 2020, 17(10): 103-109.
SHEN J, DING X X, SONG K Q, et al.Research Progress on Corrosion and Protection of Equipment Materials in Marine Atmosphere[J].Equipment Environmental Engineering, 2020, 17(10): 103-109.
[33] PEDEFERRI P.Corrosion Science and Engineering[M].Switzerland: Springer Nature Switzerland, 2018.
[34] 刘应彦.海洋大气环境中2198铝锂合金干湿交替腐蚀行为研究[D].广汉: 中国民用航空飞行学院, 2025.
LIU Y Y.Alternating Wet and Dry Corrosion of 2198 Aluminium-Lithium Alloys in Marine Atmospheric Environments Behavioural Studies[D].Guanghan: Civil Aviation Flight University of China, 2025.
[35] 赖思颖, 高丽, 李金龙.热带海洋环境不锈钢的腐蚀行为及其机理[J].中国表面工程, 2024, 37(6): 216-225.
LAI S Y, GAO L, LI J L.Corrosion Behavior and Mechanism of 304 and 316 Stainless Steel in Tropical Marine Environment[J].China Surface Engineering, 2024, 37(6): 216-225.
[36] 朱金阳, 李明, 李刚, 等.装配对典型螺栓/螺母紧固件盐雾环境腐蚀行为的影响[J].工程科学学报, 2018, 40(2): 217-225.
ZHU J Y, LI M, LI G, et al.Influence of Assembly on Corrosion Behaviors of Bolt/Nut Connections in a Salt-Spray Environment[J].Chinese Journal of Engineering, 2018, 40(2): 217-225.
[37] 冯成慧, 王继普, 赵连红, 等.腐蚀环境下典型“钛-铝”复合耳片腐蚀防护性能研究[J].装备环境工程, 2022, 19(8): 50-58.
FENG C H, WANG J P, ZHAO L H, et al.Corrosion Protection Performance of Typical “Titanium-Aluminum” Composite Lugs in Corrosive Environment[J].Equipment Environmental Engineering, 2022, 19(8): 50-58.
[38] XU D, PEI Z B, YANG X J, et al.A Review of Trends in Corrosion-Resistant Structural Steels Research-from Theoretical Simulation to Data-Driven Directions[J].Materials, 2023, 16(9): 3396.
[39] HARIS N I N, SOBRI S, YUSOF Y A, et al.An Overview of Molecular Dynamic Simulation for Corrosion Inhibition of Ferrous Metals[J].Metals, 2020, 11(1): 11010046.
[40] JAFARZADEH S, CHEN Z G, BOBARU F.Computational Modeling of Pitting Corrosion[J].Corrosion Reviews, 2019, 37(5): 419-439.
[41] RUIZ-GARCIA A, ESQUIVEL-PEÑA V, GODÍNEZ F A, et al.Corrosion Modeling of Aluminum Alloys: A Brief Review[J].ChemElectroChem, 2024, 11(9): e202300712.
[42] LIU P, XU Q, ZHANG Q, et al.A New Insight into Corrosion Inhibition Mechanism of the Corrosion Inhibitors: Review on DFT and MD Simulation[J].Journal of Adhesion Science and Technology, 2024, 38(10): 1563-1584.
[43] 黄海亮, 陈跃良, 张柱柱, 等.飞机结构常见腐蚀形式仿真研究进展[J].航空学报, 2021, 42(5): 88-105.
HUANG H L, CHEN Y L, ZHANG Z Z, et al.Research Progress of Corrosion Simulation of Aircraft Structures[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 88-105.
[44] 贾静焕, 骆晨, 孙志华, 等.航空发动机典型连接件腐蚀仿真分析[J].中国腐蚀与防护学报, 2024, 44(4): 979-986.
JIA J H, LUO C, SUN Z H, et al.Simulation and Analysis of Typical Connected Parts for Areoengine Compressor[J].Journal of Chinese Society for Corrosion and Protection, 2024, 44(4): 979-986.
[45] 许振晓, 郁大照, 周猛蛟, 等.薄液膜对航空射频连接器信号传输影响的分析[J].海军航空大学学报, 2022, 37(6): 455-461.
XU Z X, YU D Z, ZHOU M J, et al.Analysis of Effect of Thin Liquid Film on Signal Transmission of Aerial RF Connector[J].Journal of Naval Aviation University, 2022, 37(6): 455-461.
[46] 张伟, 孙靖觉, 吕胜利, 等.铝合金点蚀的数字孪生建模及强度分析[J].航空科学技术, 2025, 36(8): 34-42.
ZHANG W, SUN J J, LYU S L, et al.Digital Twin Modeling and Strength Analysis on Aluminum Alloy Pitting Corrosion[J].Aeronautical Science & Technology, 2025, 36(8): 34-42.
[47] 刘琦, 郁大照, 王琳, 等.航空电连接器海洋环境加速试验与腐蚀仿真研究[J].装备环境工程, 2021, 18(11): 18-27.
LIU Q, YU D Z, WANG L, et al.Acceleration Test and Corrosion Simulation of Aviation Electrical Connectors in Marine Environment[J].Equipment Environmental Engineering, 2021, 18(11): 18-27.
[48] YANG G W, LI Y R, GUO X, et al.Innovative Dynamic Evaluation and Classification Method for Marine Atmospheric Corrosion Based on Corrosion Sensors and Machine Learning[J].Materials Today Communications, 2025, 42: 111558.
[49] WANG B Q, LIU L G, CHENG X Q, et al.Advanced Multi-Image Segmentation-Based Machine Learning Modeling Strategy for Corrosion Prediction and Rust Layer Performance Evaluation of Weathering Steel[J].Corrosion Science, 2024, 237: 112334.
[50] JI H D, WANG H, CHEN Q, et al.Corrosion Behavior Prediction for Hull Steels under Dynamic Marine Environments by Jointly Utilizing LSTM Network and PSO-RF Model[J].Ocean Engineering, 2024, 300: 117371.
[51] WANG B Q, LI Y R, CHENG X Q, et al.Data-Driven Optimization Model Customization for Atmospheric Corrosion on Low-Alloy Steel: Incorporating the Dynamic Evolution of the Surface Rust Layer[J].Corrosion Science, 2023, 221: 111349.
[52] XU Z C, LI X L, CAI B Y, et al.Accurate Prediction of Pitting Corrosion in Aluminum Alloys via Integrated Multi-Model Methods[J].Progress in Natural Science: Materials International, 2025, 35(4): 701-711.
[53] 王旭东, 张立伟, 张小红, 等.海运及沿海发射期间航天产品的腐蚀风险与应对策略[J].航天器环境工程, 2015, 32(4): 451-456.
WANG X D, ZHANG L W, ZHANG X H, et al.Corrosion Risks of Aerospace Products during Shipping and Coastal Period[J].Spacecraft Environment Engineering, 2015, 32(4): 451-456.
[54] 邢伟, 陈强, 常嵩, 等.临海航天发射场设施设备腐蚀控制策略研究[J].装备环境工程, 2021, 18(8): 36-42.
XING W, CHEN Q, CHANG S, et al.Study on Corrosion Control Strategy of Facilities and Equipment in Coastal Space Launch Site[J].Equipment Environmental Engineering, 2021, 18(8): 36-42.
[55] 刘东, 吴家仁, 周一舟, 等.舰载机综合保障技术实践及发展展望[J].航空学报, 2021, 42(8): 99-116.
LIU D, WU J R, ZHOU Y Z, et al.Practice and Prospects of Comprehensive Support Technologies of Carrier-Based Aircraft[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 99-116.
[56] 陈跃良, 陈亮, 卞贵学, 等.先进舰载战斗机腐蚀防护控制与日历寿命设计[J].航空学报, 2021, 42(8): 364-376.
CHEN Y L, CHEN L, BIAN G X, et al.Corrosion Protection Control and Calendar Life Design of Advanced Carrier-Based Aircraft[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 364-376.
[57] 申蒸洋, 陈孝明, 黄领才.大型水陆两栖飞机特殊任务模式对总体设计的挑战[J].航空学报, 2019, 40(1): 195-204.
SHEN Z Y, CHEN X M, HUANG L C.Challenges for Aircraft Design Due to Special Mission Models of Large-Scale Amphibious Aircraft[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 195-204.
[58] 侯悦, 田原, 赵志鹏, 等.海洋工程用铝合金的腐蚀与防护研究进展[J].表面技术, 2022, 51(5): 1-14.
HOU Y, TIAN Y, ZHAO Z P, et al.Corrosion and Protection of Aluminum Alloy for Marine Engineering[J].Surface Technology, 2022, 51(5): 1-14.
[59] 夏先朝, 潘玥, 袁杏, 等.镁合金表面腐蚀防护技术研究进展[J].表面技术, 2023, 52(5): 37-50.
XIA X C, PAN Y, YUAN X, et al.Research Progress of Surface Corrosion Protection Technology for Mg Alloys[J].Surface Technology, 2023, 52(5): 37-50.
[60] HOU X R, LI B Z, ZHOU Z H, et al.Superhydrophobic and Corrosion-Resistant Coating on Magnesium-Lithium Alloys[J].Journal of the Taiwan Institute of Chemical Engineers, 2025, 176: 106319.
[61] WANG Y F, ZHANG C Q, CHEN K, et al.Sprayed Dual-Layer Epoxy Coatings with Enhanced Superhydrophobic Stability, Corrosion Resistance, and Mechanical Robustness for Industrial Metal Protection[J].Materials Today Communications, 2025, 49: 114227.
[62] LIU H, TANG A H, XU W X, et al.Effect of Carbon-Based Filler Dimensions on the Anti-Corrosion Performance for Epoxy Composite Coating[J].Inorganic Chemistry Communications, 2025, 180: 114913.
[63] KHALID S, MUBEEN M, TABISH M, et al.When Low-Dimensional Nanomaterials Meet Polymers: A Promising Configuration for Flame Retardancy and Corrosion Protection[J].Chemical Engineering Journal, 2025, 515: 163678.
[64] 徐金勇, 吴庆丹, 魏新龙, 等.电弧喷涂耐海水腐蚀金属涂层的研究进展[J].材料导报, 2020, 34(13): 13155-13159.
XU J Y, WU Q D, WEI X L, et al.Research Progress on Arc Sprayed Metal Coatings for Seawater Corrosion Protection[J].Materials Review, 2020, 34(13): 13155-13159.

基金

国家国防科技工业局技术基础科研项目(JSHS2020209A001); 国家自然科学基金(11902363)

PDF(5350 KB)

Accesses

Citation

Detail

段落导航
相关文章

/